An Estimator of Heavy Tail Index through the Generalized Jackknife Methodology

Author:

Liu Weiqi1,Xing Hongwei2

Affiliation:

1. Institute of Management and Decision, Shanxi University, Taiyuan 030006, China

2. School of Business, Shanxi University, Taiyuan 030006, China

Abstract

In practice, sometimes the data can be divided into several blocks but only a few of the largest observations within each block are available to estimate the heavy tail index. To address this problem, we propose a new class of estimators through the Generalized Jackknife methodology based on Qi’s estimator (2010). These estimators are proved to be asymptotically normal under suitable conditions. Compared to Hill’s estimator and Qi’s estimator, our new estimator has better asymptotic efficiency in terms of the minimum mean squared error, for a wide range of the second order shape parameters. For the finite samples, our new estimator still compares favorably to Hill’s estimator and Qi’s estimator, providing stable sample paths as a function of the number of dividing the sample into blocks, smaller estimation bias, and MSE.

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

Subject

General Engineering,General Mathematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3