Affiliation:
1. School of Science, Chongqing University of Posts and Telecommunications, Chongqing 400065, China
2. School of Science, Wuhan University of Technology, Wuhan 430070, China
Abstract
Short-term traffic flow prediction is an important theoretical basis for intelligent transportation systems, and traffic flow data contain abundant multimode features and exhibit characteristic spatiotemporal correlations and dynamics. To predict the traffic flow state, it is necessary to design a model that can adapt to changing traffic flow characteristics. Thus, a dynamic tensor rolling nonhomogeneous discrete grey model (DTRNDGM) is proposed. This model achieves rolling prediction by introducing a cycle truncation accumulated generating operation; furthermore, the proposed model is unbiased, and it can perfectly fit nonhomogeneous exponential sequences. In addition, based on the multimode characteristics of traffic flow data tensors and the relationship between the cycle truncation accumulated generating operation and matrix perturbation to determine the cycle of dynamic prediction, the proposed model compensates for the periodic verification of the RSDGM and SGM grey prediction models. Finally, traffic flow data from the main route of Shaoshan Road, Changsha, Hunan, China, are used as an example. The experimental results show that the simulation and prediction results of DTRNDGM are good.
Funder
National Natural Science Foundation of China
Subject
Multidisciplinary,General Computer Science
Cited by
26 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献