Fractional Stress Relaxation Model of Rock Freeze-Thaw Damage

Author:

Liu Q.1ORCID,Chen W.1ORCID,Guo J. K.1ORCID,Li R. F.1ORCID,Ke D.1ORCID,Wu Y.1ORCID,Tian W.1,Li X. Z.2ORCID

Affiliation:

1. Civil Engineering, Chang’an University, Xi’an 710061, China

2. State Key Laboratory of Mechanical Behavior and System Safety of Traffic Engineering Structures, Shijiazhuang Tiedao University, Shijiazhuang 050043, China

Abstract

Freeze-thaw cycle is a type of fatigue loading, and rock stress relaxation under freeze-thaw cycles takes into account the influence of the freeze-thaw cycle damage and deterioration. Rock stress relaxation under freeze-thaw cycles is one of the paramount issues in tunnel and slope stability research. To accurately describe the mechanical behaviour of stress relaxation of rocks under freeze-thaw, the software element is constructed based on the theory of fractional calculus to replace the ideal viscous element in the traditional element model. The freeze-thaw damage degradation of viscosity coefficient is considered. A new three-element model is established to better reflect the nonlinear stress relaxation behavior of rocks under freeze-thaw. The freeze-thaw and stress relaxation of rock are simulated by ABAQUS, the relevant model parameters are determined, and the stress relaxation equation of rock under freeze-thaw cycle is obtained based on numerical simulation results. The research shows that the test results are consistent with the calculated results, indicating that the constitutive equation can better describe the stress relaxation characteristics of rocks under freeze-thaw and provide theoretical basis for surrounding rock support in cold region.

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

Subject

General Engineering,General Materials Science

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3