An Action Recognition Method for Volleyball Players Using Deep Learning

Author:

Tang JinGen1ORCID

Affiliation:

1. Physical Education College of Hunan Institute of Science and Technology, Hunan 414006, China

Abstract

This paper investigates the extraction of volleyball players’ skeleton information and provides a deep learning-based solution for recognizing the players’ actions. For this purpose, the convolutional neural network-based approach for recognizing volleyball players’ actions is used. The Lie group skeleton has a large data dimension since it is used to represent the features retrieved from the model. The convolutional neural network is used for feature learning and classification in order to process high-dimensional data, minimize the complexity of the recognition process, and speed up the calculation. This paper uses the Lie group skeleton representation model to extract the geometric feature of the skeleton information in the feature extraction stage and the geometric transformation (rotation and translation) between different limbs to represent the volleyball players’ movements in the feature representation stage. The approach is evaluated using the datasets Florence3D actions, MSR action pairs, and UTKinect action. The average recognition rate of our method is 93.00%, which is higher than that of the existing literature with high attention and reflects better accuracy and robustness.

Publisher

Hindawi Limited

Subject

Computer Science Applications,Software

Reference30 articles.

1. Action recognition based on deep learning and artificial intelligence planning;X. H. Zheng;Acta Electronica Sinica,2019

2. Skeleton-based action recognition based on deep learning and grassmannian pyramids;D. Konstantinidis

3. Real time human action recognition and monitoring method based on deep learning[J];A. Liu;Science of Heilongjiang,2018

4. Human action recognition using transfer learning with deep representations

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3