Systems Pharmacology and In Silico Docking Analysis Uncover Association of CA2, PPARG, RXRA, and VDR with the Mechanisms Underlying the Shi Zhen Tea Formula Effect on Eczema

Author:

Wang Zhen-Zhen12ORCID,Jia Yuan1,Srivastava Kamal D.23,Huang Weihua4,Tiwari Raj25,Nowak-Wegrzyn Anna67,Geliebter Jan25,Miao Mingsan1ORCID,Li Xiu-Min25ORCID

Affiliation:

1. Academy of Chinese Medical Science, Henan University of Chinese Medicine, Zhengzhou 450046, China

2. Department of Microbiology & Immunology, New York Medical College, New York 10595, USA

3. General Nutraceutical Technology LLC, Elmsford, New York 10523, USA

4. Department of Pathology, New York Medical College, New York 10595, USA

5. Department of Otolaryngology, School of Medicine, New York Medical College, New York 10595, USA

6. Department of Pediatrics, New York University Langone Health, New York, NY 10029, USA

7. Department of Pediatrics, Gastroenterology and Nutrition, Collegium Medicum, University of Warmia and Mazury, Olsztyn 10-561, Poland

Abstract

Eczema is a complex chronic inflammatory skin disease impacted by environmental factors, infections, immune disorders, and deficiencies in skin barrier function. Shi Zhen Tea (SZT), derived from traditional Chinese medicine Xiao-Feng-San, has shown to be an effective integrative therapy for treating skin lesions, itching, and sleeping loss, and it facilitates reduction of topical steroid and antihistamine use in pediatric and adult patients with severe eczema. Yet, its active compounds and therapeutic mechanisms have not been elucidated. In this study, we sought to investigate the active compounds and molecular mechanisms of SZT in treating eczema using systems pharmacology and in silico docking analysis. SZT is composed of 4 medicinal herbs, Baizhu (Atractylodis macrocephalae rhizome), Jingjie (Schizonepetae herba), Kushen (Sophorae flavescentis radix), and Niubangzi (Arctii fructus). We first identified 51 active compounds from SZT and their 81 potential molecular targets by high-throughput computational analysis, from which we identified 4 major pathways including Th17 cell differentiation, metabolic pathways, pathways in cancer, and the PI3K-Akt signaling pathway. Through network analysis of the compound-target pathway, we identified hub molecular targets within these pathways including carbonic anhydrase II (CA2), peroxisome proliferator activated receptor γ (PPAR γ), retinoid X receptor α (RXRA), and vitamin D receptor (VDR). We further identified top 5 compounds including cynarine, stigmasterin, kushenol, β-sitosterol, and (24S)-24-propylcholesta-5-ene-3β-ol as putative key active compounds on the basis of their molecular docking scores with identified hub target proteins. Our study provides an insight into the therapeutic mechanism underlying multiscale benefits of SZT for eczema and paves the way for developing new and potentially more effective eczema therapies.

Funder

Henan University

Publisher

Hindawi Limited

Subject

Complementary and alternative medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3