Identification of Influential Nodes via Effective Distance-based Centrality Mechanism in Complex Networks

Author:

Ullah Aman1ORCID,wang Bin1ORCID,Sheng Jinfang1ORCID,Long Jun12ORCID,Khan Nasrullah34ORCID

Affiliation:

1. School of Computer Science and Engineering, Central South University, Changsha, 410083, China

2. Big Data Institute, Central South University, Changsha 410083, China

3. College of Computer Science and Technology, Nanjing University of Aeronautic and Astronautic, Nanjing 210016, China

4. Department of Computer Science, COMSATS University Islamabad, Vehari Campus, Vehari 61100, Pakistan

Abstract

Efficient identification of influential nodes is one of the essential aspects in the field of complex networks, which has excellent theoretical and practical significance in the real world. A valuable number of approaches have been developed and deployed in these areas where just a few have used centrality measures along with their concerning deficiencies and limitations in their studies. Therefore, to resolve these challenging issues, we propose a novel effective distance-based centrality (EDBC) algorithm for the identification of influential nodes in concerning networks. EDBC algorithm comprises factors such as the power of K-shell, degree nodes, effective distance, and numerous levels of neighbor’s influence or neighborhood potential. The performance of the proposed algorithm is evaluated on nine real-world networks, where a susceptible infected recovered (SIR) epidemic model is employed to examine the spreading dynamics of each node. Simulation results demonstrate that the proposed algorithm outperforms the existing techniques such as eigenvector, betweenness, closeness centralities, hyperlink-induced topic search, H-index, K-shell, page rank, profit leader, and gravity over a valuable margin.

Funder

National Key Research and Development Program of China

Publisher

Hindawi Limited

Subject

Multidisciplinary,General Computer Science

Cited by 28 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3