Lightweight Privacy-Preserving Data Sharing Scheme for Internet of Medical Things

Author:

Zhao Zhuo1,Hsu Chingfang1ORCID,Harn Lein2,Yang Qing1,Ke Lulu1

Affiliation:

1. Computer School, Central China Normal University, Wuhan 430079, China

2. Department of Computer Science Electrical Engineering, University of Missouri-Kansas City, Kansas City, 64110 MO, USA

Abstract

Internet of Medical Things (IoMT) is a kind of Internet of Things (IoT) that includes patients and medical sensors. Patients can share real-time medical data collected in IoMT with medical professionals. This enables medical professionals to provide patients with efficient medical services. Due to the high efficiency of cloud computing, patients prefer to share gathering medical information using cloud servers. However, sharing medical data on the cloud server will cause security issues, because these data involve the privacy of patients. Although recently many researchers have designed data sharing schemes in medical domain for security purpose, most of them cannot guarantee the anonymity of patients and provide access control for shared health data, and further, they are not lightweight enough for IoMT. Due to these security and efficiency issues, a novel lightweight privacy-preserving data sharing scheme is constructed in this paper for IoMT. This scheme can achieve the anonymity of patients and access control of shared medical data. At the same time, it satisfies all described security features. In addition, this scheme can achieve lightweight computations by using elliptic curve cryptography (ECC), XOR operations, and hash function. Furthermore, performance evaluation demonstrates that the proposed scheme takes less computation cost through comparison with similar solutions. Therefore, it is fairly an attractive solution for efficient and secure data sharing in IoMT.

Funder

Natural Science Foundation of Guangxi Province

Publisher

Hindawi Limited

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Information Systems

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3