A SuperLearner Approach to Predict Run-In Selection in Clinical Trials

Author:

Lanera Corrado1ORCID,Berchialla Paola2ORCID,Lorenzoni Giulia1ORCID,Acar Aslihan Şentürk3ORCID,Chiminazzo Valentina1,Azzolina Danila14ORCID,Gregori Dario1ORCID,Baldi Ileana1ORCID

Affiliation:

1. Unit of Biostatistics, Epidemiology and Public Health, Department of Cardiac, Thoracic, Vascular Sciences, and Public Health, University of Padova, Via Loredan, 18, 35121 Padova, Italy

2. Department of Clinical and Biological Sciences, University of Torino, Via Verdi 8, 10124 Torino, Italy

3. Department of Actuarial Sciences, Hacettepe University, Ankara, 06800, Turkey

4. Department of Environmental and Preventive Sciences, University of Ferrara, Via Fossato di Mortara 64B, 44121 Ferrara, Italy

Abstract

A critical early step in a clinical trial is defining the study sample that appropriately represents the target population from which the sample will be drawn. Envisaging a “run-in” process in study design may accomplish this task; however, the traditional run-in requires additional patients, increasing times, and costs. The possible use of the available a-priori data could skip the run-in period. In this regard, ML (machine learning) techniques, which have recently shown considerable promising usage in clinical research, can be used to construct individual predictions of therapy response probability conditional on patient characteristics. An ensemble model of ML techniques was trained and validated on twin randomized clinical trials to mimic a run-in process within this framework. An ensemble ML model composed of 26 algorithms was trained on the twin clinical trials. SuperLearner (SL) performance for the Verum (Treatment) arm is above 70% sensitivity. The Positive Predictive Value (PPP) achieves a value of 80%. Results show good performance in the direction of being useful in the simulation of the run-in period; the trials conducted in similar settings can train an optimal patient selection algorithm minimizing the run-in time and costs of conduction.

Publisher

Hindawi Limited

Subject

Applied Mathematics,General Immunology and Microbiology,General Biochemistry, Genetics and Molecular Biology,Modeling and Simulation,General Medicine

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3