Ultrasonic Imaging of Cardiovascular Disease Based on Image Processor Analysis of Hard Plaque Characteristics

Author:

Wang Chunxia1,Ren Yufeng2,Li Jing1ORCID

Affiliation:

1. Department of Ultrasound, Liaocheng People’s Hospital, Liaocheng, 252000 Shandong, China

2. Department of Ultrasound, Dongchangfu Hospital of Traditional Chinese Medicine, Liaocheng, 252000 Shandong, China

Abstract

Cardiovascular disease detection and analysis using ultrasonic imaging expels errors in manual clinical trials with precise outcomes. It requires a combination of smart computing systems and intelligent image processors. The disease characteristics are analyzed based on the configuration and precise tuning of the processing device. In this article, a characteristic extraction technique (CET) using knowledge learning (KL) is introduced to improve the analysis precision. The proposed method requires optimal selection of disease features and trained similar datasets for improving the characteristic extraction. The disease attributes and accuracy are identified using the standard knowledge update. The image and data features are segmented using the variable processor configuration to prevent false rates. The false rates due to unidentifiable plaque characteristics result in weak knowledge updates. Therefore, the segmentation and data extraction are unanimously performed to prevent feature misleads. The knowledge base is updated using the extracted and identified plaque characteristics for consecutive image analysis. The processor configurations are manageable using the updated knowledge and characteristics to improve precision. The proposed method is verified using precision, characteristic update, training rate, extraction ratio, and time factor.

Publisher

Hindawi Limited

Subject

General Immunology and Microbiology,General Biochemistry, Genetics and Molecular Biology,General Medicine

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3