Qufeng Xuanbi Formula Ameliorates Airway Remodeling in Asthmatic Mice by Suppressing Airway Smooth Muscle Cell Proliferation through MEK/ERK Signaling Pathway

Author:

Wang Bohan1,Tang Lingling1,Shi Suofang1ORCID,Yang Ying1,Sun Xianhong1,Zhang Xiaona1,Liu Chunyang1,Liu Li1ORCID

Affiliation:

1. Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210029, China

Abstract

Asthma is a common chronic respiratory disease. The Qufeng Xuanbi formula (QFXBF), a Chinese herbal decoction, has shown efficacy in the management of asthma. The purpose of this study was to investigate the potential therapeutic effects of QFXBF in the treatment of asthma both in vitro and in vivo. Platelet-derived growth factor (PDGF)-induced airway smooth muscle cell (ASMC) proliferation and MTT assays were used to explore the effects of QFXBF on the proliferation of ASMCs. Moreover, 40 female BALB/c mice were randomly divided into five groups: control group, ovalbumin (OVA) group, high QFXBF group, low QFXBF group, and dexamethasone (DEX) group (n = 8 per group). A mouse allergic asthma model was established using the intranasally administered OVA sensitization method. Morphological changes in the lung tissue were examined by hematoxylin and eosin (H&E) staining and Masson’s trichrome staining. Finally, the protein expression of alpha-smooth muscle actin (α-SMA), proliferating cell nuclear antigen (PCNA), phospho-mitogen-activated protein kinase (p-MEK1/2), mitogen-activated protein kinase (MEK1/2), phospho-extracellular signal-regulated kinases (p-ERK1/2), and extracellular signal-regulated kinases (ERK1/2) in ASMCs and lung tissue were determined by western blotting and immunofluorescent staining assays. PDGF significantly increased the viability of ASMCs. Compared with mice in the control group, the airway walls and airway smooth muscle of mice in the OVA group were thickened, and the number of inflammatory cells around the bronchus significantly increased. Moreover, the administration of QFXBF markedly inhibited the proliferation of ASMCs and alleviated the pathological changes induced by OVA. Furthermore, the protein expressions of p-ERK1/2, p-MEK1/2, PCNA, and α-SMA were significantly increased in OVA-treated mice and PDGF-treated ASMCs. Finally, treatment with QFXBF also significantly decreased the protein expression of p-ERK1/2, p-MEK1/2, α-SMA, and PCNA. QFXBF inhibited the proliferation of ASMCs by suppressing MEK/ERK signaling in PDGF-induced ASMCs and OVA-induced mice.

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

Subject

Complementary and alternative medicine

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3