Affiliation:
1. Faculty of Chemistry, Jagiellonian University, Ingardena 3 Street, 30-060 Krakow, Poland
Abstract
Conductive carbon nanocoatings (conductive carbon layers—CCL) were formed onα-Al2O3model support using three different polymer precursors and deposition methods. This was done in an effort to improve electrical conductivity of the material through creating the appropriate morphology of the carbon layers. The best electrical properties were obtained with use of a precursor that consisted of poly-N-vinylformamide modified with pyromellitic acid (PMA). We demonstrate that these properties originate from a specific morphology of this layer that showed nanopores (3-4 nm) capable of assuring easy pathways for ion transport in real electrode materials. The proposed, water mediated, method of carbon coating of powdered supports combines coating from solution and solid phase and is easy to scale up process. The optimal polymer carbon precursor composition was used to prepare conductive carbon nanocoatings on LiFePO4cathode material. Charge-discharge tests clearly show that C/LiFePO4composites obtained using poly-N-vinylformamide modified with pyromellitic acid exhibit higher rechargeable capacity and longer working time in a battery cell than standard carbon/lithium iron phosphate composites.
Funder
National Science Center of Poland
Subject
General Materials Science
Cited by
8 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献