Image Segmentation Method for an Illumination Highlight Region of Interior Design Effects Based on the Partial Differential Equation

Author:

Wang Lina1,Liu Yaoming2ORCID,Qian Zhike3

Affiliation:

1. Shanxi Vocational University of Engineering Science and Technology, Jinzhong 030600, China

2. Scientific Instrument Center, Shanxi University, Taiyuan 030006, China

3. College of Art and Design, Qingdao University of Technology, Qingdao 266000, China

Abstract

The saliency calculation model based on the principle of partial differential equations sometimes highlights areas with high contrast in the background, and the salient targets obtained occasionally have holes. The above problems can be solved by combining the improved convex hull calculation center saliency map. This paper designs a single-target color image segmentation algorithm based on partial differential equations. First, we calculate the basic saliency map according to the uniqueness of the color and the spatial distribution of the color; second, we then use the superpixel to improve the convex hull and calculate the central saliency map according to the principle; finally, the basic saliency map and the central saliency map are calculated. The weighted fusion is used to obtain the comprehensive saliency map, and the threshold method is used to segment the comprehensive saliency map to obtain the final target image. This paper designs an evaluation standard suitable for the segmentation of the illuminated highlight area of the effect image. It compares the experimental results of the segmentation method in this paper with the SLIC (Simple Linear Iterative Clustering) method and the traditional superpixel method to segment the illuminated highlight area. The segmentation method is applied to the image enhancement experiment. Based on the fuzzy means clustering algorithm, a fuzzy clustering objective function including brightness, color, and distance parameters is designed, which improves the weight of the brightness value in the clustering and improves the edge fit of the segmentation of the lighting highlight area of the rendering. The segmentation method produced by combining the clustering method with the superpixel biased clustering method can improve the output effect of the illuminated highlight area of the effect image after segmentation. We perform color equalization processing on the image to be segmented to reduce the impact of light, then set the closed value of the brightness information component, perform segmentation judgment, and expand the long and short axes of the ellipse model in the high-brightness area to further reduce the impact of light. The experimental results prove that the above method has a better segmentation effect than the traditional ellipse model and can accurately segment the gesture image. Compared with the existing mainstream saliency calculation models, this algorithm is closer to the true value image in terms of visual effects and has obvious advantages in terms of accuracy.

Funder

National Social Science Foundation of China

Publisher

Hindawi Limited

Subject

Applied Mathematics,General Physics and Astronomy

Reference21 articles.

1. DARNet: deep active ray network for building segmentation;D. Cheng

2. Investigation of implicit active contours for scientific image segmentation;S. K. Weeratunga;Society for Optics and Photonics,2020

3. Partial differential equation models in macroeconomics

4. LCIS: a boundary hierarchy for detail-preserving contrast reduction;J. Tumblin

5. A note on the design of hp-adaptive finite element methods for elliptic partial differential equations;P. Houston;Computer Methods in Applied Mechanics and Engineering,2020

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Application of modern architectural color layout in interior design;Applied Mathematics and Nonlinear Sciences;2023-10-11

2. Partial Differential Equations and Digital Image Processing : A Review;2022 8th International Engineering Conference on Sustainable Technology and Development (IEC);2022-02-23

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3