A Novel Key Influencing Factors Selection Approach of P2P Lending Investment Risk

Author:

Xia Pingfan12ORCID,Ni Zhiwei12ORCID,Zhu Xuhui12ORCID,Ni Liping12ORCID

Affiliation:

1. School of Management, Hefei University of Technology, Hefei 230009, China

2. Key Laboratory of Process Optimization and Intelligent Decision-Making, Ministry of Education, Hefei 230009, China

Abstract

Recent frequent “thunderstorm incidents” of P2P lending industry have caused the panic of industry investors. To predict the investment risk of P2P lending, we should scientifically and rationally analyze the key influencing factors of P2P lending investment risk. Existing key influencing factors selection methods mainly involve traditional statistical approaches and artificial intelligence methods. The traditional statistical approaches cannot deal with the high-dimensional nonlinear problems, and it cannot find the exact key influencing factors of the P2P lending investment risk. The artificial intelligence methods cannot recognize and learn the application background, and the selected attributes without active thinking and personal perception may not be the key influencing factors of P2P lending investment risk. To address the above issues, a novel key influencing factors selection approach of P2P lending investment risk is proposed by combining the proposed fireworks coevolution binary glowworm swarm optimization (FCBGSO), multifractal dimension (MFD), probit regression, and artificial prior knowledge. First, multifractal dimension combined with the proposed FCBGSO is used to select the preliminary influencing factors of the investment risk; second, the nonsignificant relevant attributes in the preliminary influencing factors are removed using the probit regression, and we add the influencing factors extracted from the original dataset of P2P lending using the artificial prior knowledge into the retaining influencing factors after removing one by one. A small and reasonable number of influencing factor subsets are achieved. Finally, we evaluate each influencing factors subset using extreme learning machine (ELM), and the subset with the best classification accuracy is efficiently achieved, i.e., it is the key influencing factors of P2P lending investment risk. Experimental results on the real P2P lending dataset from the Renrendai platform demonstrate that the proposed approach performs better than other state-of-the-art methods and that it has validity and effectiveness. It provides a new research idea for the key influencing factors selection of P2P lending investment risk.

Funder

Natural Science Foundation of Anhui Province

Publisher

Hindawi Limited

Subject

General Engineering,General Mathematics

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3