Hybrid Feature Extraction of Pipeline Microstates Based on Φ-OTDR Sensing System

Author:

Hu Yanzhu1,Meng Zhen1ORCID,Ai Xinbo1ORCID,Li Han1,Hu Yu1ORCID,Zhao Huiyang1

Affiliation:

1. Beijing University of Posts and Telecommunications, No. 10 Xi Tu Cheng Road, Beijing 100876, China

Abstract

This paper proposes a general integration method which can effectively describe the characteristics of pipeline leakage and help distinguish multiple pipeline microstates. Since the rapid development of Φ-OTDR in recent years, this technology has been applied to more and more fields, such as fiber optic safety monitoring, seismic monitoring, and structural health monitoring. Among them, Φ-OTDR has the characteristic of continuous full-scale monitoring in pipeline monitoring, but there are few researches on pipeline state characteristics at present. In this paper, based on the analysis of the pipeline state with Φ-OTDR technology, a method of extracting multiple microstates of pipelines is proposed. This method combined with the peak-to-average power ratio, short-term interval zero crossing, and fractal characteristics in the frequency domain can effectively characterize the microstate of pipes and provide support for identification of more microstates of pipelines. These features reflect the common characteristics of leaks in gas pipelines and liquid pipelines. Meanwhile, their combination features can represent the small differences in pipeline states. The experimental results show that the method can effectively characterize the microstate information of the pipeline, and the recognition rate of the hybrid feature under two kinds of pipeline leakage and multipressure conditions reaches 91% and 83%.

Funder

Beijing Municipal Natural Science Foundation

Publisher

Hindawi Limited

Subject

Electrical and Electronic Engineering,Computer Science Applications,Modeling and Simulation

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3