Aminoquinolines as Translational Models for Drug Repurposing: Anticancer Adjuvant Properties and Toxicokinetic-Related Features

Author:

Ferreira Paulo Michel Pinheiro1ORCID,Ferreira José Roberto de Oliveira2ORCID,Sousa Rayran Walter Ramos de1ORCID,Bezerra Daniel Pereira3ORCID,Militão Gardenia Carmen Gadelha4ORCID

Affiliation:

1. Department of Biophysics and Physiology, Laboratory of Experimental Cancerology (LabCancer), Federal University of Piauí, Teresina 64049-550, Brazil

2. Center for Integrative Sciences, State University of Health Sciences of Alagoas, Maceió 57010-382, Brazil

3. Gonçalo Moniz Institute, Oswaldo Cruz Foundation (IGM-FIOCRUZ-BA), Salvador 40296-710, Brazil

4. Department of Physiology and Pharmacology, Federal University of Pernambuco, Recife 50670-901, Brazil

Abstract

The indiscriminate consumption of antimalarials against coronavirus disease-2019 emphasizes the longstanding clinical weapons of medicines. In this work, we conducted a review on the antitumor mechanisms of aminoquinolines, focusing on the responses and differences of tumor histological tissues and toxicity related to pharmacokinetics. This well-defined analysis shows similar mechanistic forms triggered by aminoquinolines in different histological tumor tissues and under coexposure conditions, although different pharmacological potencies also occur. These molecules are lysosomotropic amines that increase the antiproliferative action of chemotherapeutic agents, mainly by cell cycle arrest, histone acetylation, physiological changes in tyrosine kinase metabolism, inhibition of PI3K/Akt/mTOR pathways, cyclin D1, E2F1, angiogenesis, ribosome biogenesis, triggering of ATM-ATR/p53/p21 signaling, apoptosis, and presentation of tumor peptides. Their chemo/radiotherapy sensitization effects may be an adjuvant option against solid tumors, since 4-aminoquinolines induce lysosomal-mediated programmed cytotoxicity of cancer cells and accumulation of key markers, predominantly, LAMP1, p62/SQSTM1, LC3 members, GAPDH, beclin-1/Atg6, α-synuclein, and granules of lipofuscin. Adverse effects are dose-dependent, though most common with chloroquine, hydroxychloroquine, amodiaquine, and other aminoquinolines are gastrointestinal changes, blurred vision ventricular arrhythmias, cardiac arrest, QTc prolongation, severe hypoglycemia with loss of consciousness, and retinopathy, and they are more common with chloroquine than with hydroxychloroquine and amodiaquine due to pharmacokinetic features. Additionally, psychological/neurological effects were also detected during acute or chronic use, but aminoquinolines do not cross the placenta easily and low quantity is found in breast milk despite their long mean residence times, which depends on the coexistence of hepatic diseases (cancer-related or not), first pass metabolism, and comedications. The low cost and availability on the world market have converted aminoquinolines into “star drugs” for pharmaceutical repurposing, but a continuous pharmacovigilance is necessary because these antimalarials have multiple modes of action/unwanted targets, relatively narrow therapeutic windows, recurrent adverse effects, and related poisoning self-treatment. Therefore, their use must obey strict rules, ethical and medical prescriptions, and clinical and laboratory monitoring.

Funder

Conselho Nacional de Desenvolvimento Científico e Tecnológico

Publisher

Hindawi Limited

Subject

Oncology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3