Study on Pressure Relief Effect and Rock Failure Characteristics with Different Borehole Diameters

Author:

Liang Shiwei12ORCID,Zhang Long3,Ge Di2,Wang Qiong4ORCID

Affiliation:

1. School of Human Settlements and Civil Engineering, Xi’an Jiaotong University, Xi’an 710049, China

2. Xi’an Kedagaoxin University, Xi’an 710109, China

3. Gansu Chemical Industry Research Institute Co., Ltd., Lanzhou 730000, China

4. Department of Emergency Technology and Management, North China Institute of Science & Technology, Beijing 101601, China

Abstract

Rock burst is a common tunnel and mine dynamic disaster, especially for deep buried tunnels, which often leads to tunnel construction delay and even induces tunnel collapse and subsidence of strata. Rock drilling is one of the effective pressure relief methods to prevent these disasters. In order to study the influence of borehole diameter on rock mass pressure relief effect, indoor acoustic emission characteristics and numerical simulation of rock samples with different borehole diameter were studied. The research result shows that with the increase in borehole diameter, the effect of borehole pressure relief is better. Different borehole diameters do not change the overall trend of acoustic emission evolution, but it will lead to different acoustic emission count characteristics of rock damage and failure, especially the maximum acoustic emission count characteristics and corresponding strain values. The existence of drilling will lead to the failure stress of rock in advance. Moreover, the existence of drilling causes a great change in the failure mode of the specimen.

Funder

Education Department of Shaanxi Province

Publisher

Hindawi Limited

Subject

Mechanical Engineering,Mechanics of Materials,Geotechnical Engineering and Engineering Geology,Condensed Matter Physics,Civil and Structural Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3