A Spine Segmentation Method under an Arbitrary Field of View Based on 3D Swin Transformer

Author:

Zhang Yonghong12,Ji Xuquan23,Liu Wenyong3ORCID,Li Zhuofu456ORCID,Zhang Jian12,Liu Shanshan456,Zhong Woquan456,Hu Lei12ORCID,Li Weishi456ORCID

Affiliation:

1. Robotics Institute, School of Mechanical Engineering and Automation, Beihang University, Beijing, China

2. Beijing Zoezen Robot Co., Ltd., Beijing, China

3. School of Biological Science and Medical Engineering, Beihang University, Beijing, China

4. Peking University Third Hospital, Department of Orthopaedics, Beijing, China

5. Engineering Research Center of Bone and Joint Precision Medicine, Ministry of Education, Beijing, China

6. Beijing Key Laboratory of Spinal Disease Research, Beijing, China

Abstract

High-precision image segmentation of the spine in computed tomography (CT) images is important for the diagnosis of spinal diseases and surgical path planning. Manual segmentation is often tedious and time consuming. Thus, an automatic segmentation algorithm is expected to solve this problem. However, because different areas are scanned, the number of spines in the original CT image and the coverage area are often different, making it extremely difficult to directly conduct a fully autonomous spine segmentation. In this study, we propose a two-stage automatic spine segmentation method based on 3D Swin Transformer. In the first stage, the 3D Swin-YoloX algorithm is used to achieve an accurate positioning of each spine segment in the CT images. In the second stage, 3D Swin-UNet is used to achieve a high-precision segmentation of the spine. Using an open dataset, the average Dice of our approach can reach 0.942 and the average Hausdorff distance can reach 6.24, indicating a higher accuracy in comparison with other published methods. Our proposed method can effectively eliminate any adverse effects of the different scanning areas on a spinal image segmentation and has a high application value.

Funder

Beijing Municipal Natural Science Foundation

Publisher

Hindawi Limited

Subject

Artificial Intelligence,Human-Computer Interaction,Theoretical Computer Science,Software

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3