Research on Vibration Characteristics of a Ceramic Spindle Based on the Reverse Magnetic Effect

Author:

Zhang Ke1,Wang Zinan1ORCID,Shi Huaitao1,Bai Xiaotian1,Wang Zhan1

Affiliation:

1. School of Mechanical Engineering, Shenyang Jianzhu University, Shenyang 110168, China

Abstract

The electromagnetic radial force about a ceramic spindle affects the spindle dynamic, which determines the quality of processing. Using a Timoshenko beam unit to build the dynamic model for the ceramic spindle, the dynamic characteristic of an angular contact ball bearing is analyzed using a nonlinear bearing model. The electromagnetic magnetization model was established based on Maxwell’s theory to calculate electromagnetic magnetic density and radial force. The influence about the reverse magnetic field characteristic of the ceramic rotating shaft and dynamic stiffness of the contact ball bearing on the dynamic phenomena of the spindle is analyzed, which is verified by experiments. The results show that the magnetic effect produced by the reverse magnetic of ceramic rotation shaft has a great influence on the electromagnetic radial force. Compared with the paramagnetic effect of the metal shaft, the dynamic characteristics of the spindle can be significantly improved. Considering the coupling relationship between the radial force of the magnetic field and the bearing contact force, dynamic stiffness, and other factors, the accuracy of the model simulation is highly consistent with the test results. In particular, the ceramic spindle model has been successful in predicting with high accuracy and is suitable for multiple extreme working conditions. The parameters, such as initial eccentricity of the rotor, bearing preload, and rotating speed, can be adjusted to restrain the vibration of spindle. The ceramic spindle model provides a theoretical basis for the dynamics development of a high-speed spindle.

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

Subject

Mechanical Engineering,Mechanics of Materials,Geotechnical Engineering and Engineering Geology,Condensed Matter Physics,Civil and Structural Engineering

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Nonlinear dynamic characteristics of ceramic motorized spindle considering unbalanced magnetic pull and contact force effects;Journal of the Brazilian Society of Mechanical Sciences and Engineering;2024-02-12

2. A comprehensive review on molecular dynamics simulation studies of phenomena and characteristics associated with clathrate hydrates;Fuel;2023-04

3. Nonlinear dynamic analysis of ceramic motorized spindle considering bearing preload and span;Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science;2022-11-02

4. Nonlinear dynamic characteristics of full-ceramic motorized spindle considering axial transfer of unbalanced magnetic pull;Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science;2022-09-09

5. Analysis of dynamic characteristics of ceramic spindle considering the thermal magnetic coupling effect;Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science;2022-06-23

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3