Tianma Formula Alleviates Dementia via ACER2-Mediated Sphingolipid Signaling Pathway Involving Aβ

Author:

Lin Haochang1ORCID,Wu Sha1,Weng Zhiying1,Wang Hongyan1,Shi Rui1,Tian Menghua2,Wang Youlan3,He Haiyan4,Wang Yuchuan2,Liu Xuan5,Jian Zhimin1,Wei Fuqin1,Wang Peng1,Zhang Liuyi1,Liu Yi1,Guo Qiuzhe16ORCID,Chen Chen1ORCID,Yang Weimin1ORCID

Affiliation:

1. School of Pharmaceutical Science and Yunnan Key Laboratory of Pharmacology for Natural Products, Kunming Medical University, Kunming 650500, China

2. Zhaotong Institute of Tianma, Zhaotong 657000, China

3. Kunming Institute of Medical Sciences, Kunming 650011, China

4. College of Agronomy and Life Sciences, Zhaotong University, Zhaotong 657000, China

5. Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China

6. Department of Cardiovascular Surgery, The 1st Affiliated Hospital of Kunming Medical University, Kunmin 650032, China

Abstract

Objective. To reveal the molecular mechanism of the antagonistic effect of traditional Chinese medicine Tianma formula (TF) on dementia including vascular dementia (VaD) and Alzheimer’s disease (AD) and to provide a scientific basis for the study of traditional Chinese medicine for prevention and treatment of dementia. Method. The TF was derived from the concerted application of traditional Chinese medicine. We detected the pharmacological effect of TF in VaD rats. The molecular mechanism of TF was examined by APP/PS1 mice in vivo, Caenorhabditis elegans (C. elegans) in vitro, ELISA, pathological assay via HE staining, and transcriptome. Based on RNA-seq analysis in VaD rats, the differentially expressed genes (DEGs) were identified and then verified by quantitative PCR (qPCR) and ELISA. The molecular mechanisms of TF on dementia were further confirmed by network pharmacology and molecular docking finally. Results. The Morris water maze showed that TF could improve the cognitive memory function of the VaD rats. The ELISA and histological analysis suggested that TF could protect the hippocampus via reducing tau and IL-6 levels and increasing SYN expression. Meanwhile, it could protect the neurological function by alleviating Aβ deposition in APP/PS1 mice and C. elegans. In the RNA-seq analysis, 3 sphingolipid metabolism pathway-related genes, ADORA3, FCER1G, and ACER2, and another 5 nerve-related genes in 45 key DEGs were identified, so it indicated that the protection mechanism of TF was mainly associated with the sphingolipid metabolism pathway. In the qPCR assay, compared with the model group, the mRNA expressions of the 8 genes mentioned above were upregulated, and these results were consistent with RNA-seq. The protein and mRNA levels of ACER2 were also upregulated. Also, the results of network pharmacology analysis and molecular docking were consistent with those of RNA-seq analysis. Conclusion. TF alleviates dementia by reducing Aβ deposition via the ACER2-mediated sphingolipid signaling pathway.

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

Subject

Complementary and alternative medicine

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3