Statistical Inference for Heavy‐Tailed Burr X Distribution with Applications

Author:

Kayid MohamedORCID,Nagarjuna Vasili B. V.ORCID,Elgarhy MohammedORCID

Abstract

In this article, we present a new distribution, the so‐called heavy‐tailed Burr X (HTBX) distribution. It comes from the newly discovered heavy‐tailed (HT) family of distributions. A notable feature is that the associated probability density function can have a right‐skewed distribution that approximates symmetry, unimodality, and decreasing values, which makes it well suited for modeling various datasets. The mathematical properties of the new distribution are obtained by calculating the quantile function, ordinary moments, incomplete moments, moment generating function, conditional moment, mean deviation, Bonferroni curve, and Lorenz curve. Extensive simulation was performed to investigate the estimation of the model parameters using many established approaches, including maximum likelihood estimation, least squares estimation, weighted least squares estimation, Cramer–von Mises estimation, Anderson–Darling estimation, maximum product of spacing estimation, and percentile estimation. The simulation results showed the computational efficiency of these strategies and showed that the maximum likelihood strategy of estimation is the best strategy. The utility and importance of the newly proposed model are demonstrated by analyzing three real datasets. The HTBX distribution is compared to several well‐known extensions of the Burr distribution such as exponentiated Kavya‐Manoharan Burr X, Kavya‐Manoharan Burr X, Burr X, Kumaraswamy Rayleigh, Kumaraswamy Burr III, exponentiated Burr III, Burr III, Kumaraswamy Burr‐II, Rayleigh, and HT Rayleigh models by using different measures. The numerical results showed that the HTBX model fit the data better than the other competitive models.

Funder

King Saud University

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3