Synthesis of Iron Doped Zeolite Imidazolate Framework-8 and Its Remazol Deep Black RGB Dye Adsorption Ability

Author:

Thi Thanh Mai12,Vinh Thien Tran3,Thi Thanh Chau Vo4,Dinh Du Pham5,Phi Hung Nguyen6,Quang Khieu Dinh1ORCID

Affiliation:

1. College of Science, Hue University, Hue City 530000, Vietnam

2. Faculty of Physics-Chemistry-Biology, Quang Nam University, Tam Ky 560000, Vietnam

3. Faculty of Natural Science, Phu Yen University, Phu Yen 620000, Vietnam

4. Faculty of Technology, Industrial University of Ho Chi Minh City, Quang Ngai Campus, Quang Ngai City 570000, Vietnam

5. Faculty of Natural Science, Thu Dau Mot University, Thu Dau Mot City 820000, Vietnam

6. Department of Chemistry, Quy Nhon University, Quy Nhon City 590000, Vietnam

Abstract

Zeolite imidazole framework-8 (ZIF-8) and the iron doped ZIF-8 (Fe-ZIF-8) were synthesized by the hydrothermal process. The obtained materials were characteristic of X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), scanning electron microscope (SEM), nitrogen adsorption/desorption isotherms, and atomic absorption spectroscopy (AAS). The results showed that the obtained Fe-ZIF-8 possessed the ZIF-8 structure with a large specific area. ZIF-8 and Fe-ZIF-8 were used for the removal of Remazol Deep Black (RDB) RGB dye from aqueous solutions. The various factors affecting adsorption such as pH, initial concentration, contact time, and temperature were investigated. The results showed that the introduction of iron into ZIF-8 provided a much larger adsorption capacity and faster adsorption kinetics than ZIF-8 without iron. The electrostatic interaction and π-π interaction between the aromatic rings of the RDB dye and the aromatic imidazolate rings of the adsorbent were responsible for the RDB adsorption. Moreover, the coordination of the nitrogen atoms and oxygen in carboxyl group in RDB molecules with the Fe2+ ions in the ZIF-8 framework played a vital role for the effective removal of RDB from aqueous solution.

Funder

Ministry of Education and Training, Vietnam

Publisher

Hindawi Limited

Subject

General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3