A Hybrid Deep Neural Network Approach to Recognize Driving Fatigue Based on EEG Signals

Author:

Alghanim Mohammed,Attar HaniORCID,Rezaee KhosroORCID,Khosravi MohamadrezaORCID,Solyman AhmedORCID,Kanan Mohammad A.

Abstract

Electroencephalography (EEG) data serve as a reliable method for fatigue detection due to their intuitive representation of drivers’ mental processes. However, existing research on feature generation has overlooked the effective and automated aspects of this process. The challenge of extracting features from unpredictable and complex EEG signals has led to the frequent use of deep learning models for signal classification. Unfortunately, these models often neglect generalizability to novel subjects. To address these concerns, this study proposes the utilization of a modified deep convolutional neural network, specifically the Inception‐dilated ResNet architecture. Trained on spectrograms derived from segmented EEG data, the network undergoes analysis in both temporal and spatial‐frequency dimensions. The primary focus is on accurately detecting and classifying fatigue. The inherent variability of EEG signals between individuals, coupled with limited samples during fatigue states, presents challenges in fatigue detection through brain signals. Therefore, a detailed structural analysis of fatigue episodes is crucial. Experimental results demonstrate the proposed methodology’s ability to distinguish between alertness and sleepiness, achieving average accuracy rates of 98.87% and 82.73% on Figshare and SEED‐VIG datasets, respectively, surpassing contemporary methodologies. Additionally, the study examines frequency bands’ relative significance to further explore participants’ inclinations in states of alertness and fatigue. This research paves the way for deeper exploration into the underlying factors contributing to mental fatigue.

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3