Affiliation:
1. KIAM, Miusskaya Sq. 4, Moscow 125047, Russia
Abstract
We study the Dirichlet problem for the equationΔu−k2u=0in the exterior of nonclosed Lipschitz surfaces inR3. The Dirichlet problem for the Laplace equation is a particular case of our problem. Theorems on existence and uniqueness of a weak solution of the problem are proved. The integral representation for a solution is obtained in the form of single-layer potential. The density in the potential is defined as a solution of the operator (integral) equation, which is uniquely solvable.
Subject
Mathematics (miscellaneous)