Enhanced Differential Evolution Algorithm with Local Search Based on Hadamard Matrix

Author:

Deng Changshou1,Dong Xiaogang12ORCID,Tan Yucheng3,Peng Hu1

Affiliation:

1. School of Electronic Information Engineering, Jiujiang University, Jiujiang 332005, China

2. College of Information Management, Jiangxi University of Finance and Ecomomics, Nanchang 330013, China

3. College of Science, Jiujiang University, Jiujiang 332005, China

Abstract

Differential evolution (DE) is a robust algorithm of global optimization which has been used for solving many of the real-world applications since it was proposed. However, binomial crossover does not allow for a sufficiently effective search in local space. DE’s local search performance is therefore relatively poor. In particular, DE is applied to solve the complex optimization problem. In this case, inefficiency in local research seriously limits its overall performance. To overcome this disadvantage, this paper introduces a new local search scheme based on Hadamard matrix (HLS). The HLS improves the probability of finding the optimal solution through producing multiple offspring in the local space built by the target individual and its descendants. The HLS has been implemented in four classical DE algorithms and jDE, a variant of DE. The experiments are carried out on a set of widely used benchmark functions. For 20 benchmark problems, the four DE schemes using HLS have better results than the corresponding DE schemes, accounting for 80%, 75%, 65%, and 65% respectively. Also, the performance of jDE with HLS is better than that of jDE on 50% test problems. The experimental results and statistical analysis have revealed that HLS could effectively improve the overall performance of DE and jDE.

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

Subject

General Mathematics,General Medicine,General Neuroscience,General Computer Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3