The Pancreatic Cancer-Initiating Cell Marker CD44v6 Affects Transcription, Translation, and Signaling: Consequences for Exosome Composition and Delivery

Author:

Sun Hanxue1,Rana Sanyukta1,Wang Zhe1,Zhao Kun1,Schnölzer Martina2,Provaznik Jan3,Hackert Thilo4,Lv Qingjie5ORCID,Zöller Margot1ORCID

Affiliation:

1. Tumor Cell Biology, University Hospital of Surgery, Heidelberg, Germany

2. Functional Proteome Analysis, German Cancer Research Center, Heidelberg, Germany

3. Gene Core Unit, EMBL Heidelberg, Germany

4. Section of Pancreas Research, University Hospital of Surgery, Heidelberg, Germany

5. Department of Pathology, Shengjing Hospital of China Medical University, Shenyang, China

Abstract

Pancreatic cancer-initiating cells (PaCIC) express CD44v6 and Tspan8. A knockdown (kd) of these markers hinders the metastatic capacity, which can be rescued, if the cells are exposed to CIC-exosomes (TEX). Additional evidence that CD44v6 regulates Tspan8 expression prompted us to explore the impact of these PaCIC markers on nonmetastatic PaCa and PaCIC-TEX. We performed proteome, miRNA, and mRNA deep sequencing analyses on wild-type, CD44v6kd, and Tspan8kd human PaCIC and TEX. Database comparative analyses were controlled by qRT-PCR, Western blot, flow cytometry, and confocal microscopy. Transcriptome analysis of CD44 versus CD44v6 coimmunoprecipitating proteins in cells and TEX revealed that Tspan8, several signal-transducing molecules including RTK, EMT-related transcription factors, and proteins engaged in mRNA processing selectively associate with CD44v6 and that the membrane-attached CD44 intracytoplasmic tail supports Tspan8 and NOTCH transcription. Deep sequencing uncovered a CD44v6 contribution to miRNA processing. Due to the association of CD44v6 with Tspan8 in internalization prone tetraspanin-enriched membrane domains (TEM) and the engagement of Tspan8 in exosome biogenesis, most CD44v6-dependent changes were transferred into TEX such that the input of CD44v6 to TEX activities becomes largely waved in both a CD44v6kd and a Tspan8kd. Few differences between CD44v6kd- and Tspan8kd-TEX rely on CD44v6 being also recovered in non-TEM derived TEX, highlighting distinct TEX delivery from individual cells that jointly account for TEX-promoted target modulation. This leads us to propose a model in which CD44v6 strongly supports tumor progression by cooperating with signaling molecules, altering transcription of key molecules, and through its association with the mRNA processing machinery. The association of CD44v6 with Tspan8, which plays a crucial role in vesicle biogenesis, promotes metastases by transferring CD44v6 activities into TEM and TEM-independently derived TEX. Further investigations of the lead position of CD44v6 in shifting metastasis-promoting activities into CIC-TEX may offer a means of targeting TEX-CD44v6 in therapeutic applications.

Funder

Deutsche Krebshilfe

Publisher

Hindawi Limited

Subject

Oncology

Cited by 24 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3