Self-Healing Microcapsule-Thickened Oil Barrier Coatings

Author:

Lim Alane Tarianna O.1,Cui Chenlong1,Jang Hee Dong2,Huang Jiaxing1

Affiliation:

1. Department of Materials Science and Engineering, Northwestern University, Evanston, Illinois 60208, USA

2. Rare Metals Research Center, Korea Institute of Geoscience and Mineral Resources, Daejeon 305-350, Republic of Korea

Abstract

Low-viscosity oils could potentially act as self-healing barrier coatings because they can readily flow and reconnect to heal minor damage. For the same reason, however, they typically do not form stable coatings on metal surfaces. Increasing viscosity helps to stabilize the oil coating, but it also slows down the healing process. Here, we report a strategy for creating highly stable oil coatings on metal surfaces without sacrificing their remarkable self-healing properties. Low-viscosity oil films can be immobilized on metal surfaces using lightweight microcapsules as thickeners, which form a dynamic network to prevent the creep of the coating. When the coating is scratched, oil around the opening can rapidly flow to cover the exposed area, reconnecting the particle network. Use of these coatings as anticorrosion barriers is demonstrated. The coatings can be easily applied on metal surfaces, including those with complex geometries, both in air or under water, and remain stable even in turbulent water. They can protect metal in corrosive environments for extended periods of time and can self-heal repeatedly when scratched at the same spot. Such a strategy may offer effective mitigation of the dangerous localized corrosion aggravated by minor imperfections or damage in protective coatings, which are typically hard to prevent or detect, but can drastically degrade metal properties.

Funder

Office of Naval Research

Publisher

American Association for the Advancement of Science (AAAS)

Subject

Multidisciplinary

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3