Effect of Sulfated Polysaccharide from Undaria pinnatifida (SPUP) on Proliferation, Migration, and Apoptosis of Human Prostatic Cancer

Author:

Xu Xiaolin1,Zhu Xin1,Lu Wenglong1,He Yandong1,Wang Yihan1,Liu Feng1ORCID

Affiliation:

1. Department of Urology, Shanghai Fengxian District Central Hospital, China

Abstract

Objective. To observe the effect of sulfated polysaccharide from Undaria pinnatifida (SPUP) on proliferation, migration, and apoptosis of human prostatic cancer. Methods. DU145 human prostate cancer cells were cultured in vitro, and the proliferation activity both in the control group and the SPUP treatment groups (25, 50, 100, 200 μg/ml) was measured by CCK-8 assay. The wound healing assay was conducted to detect the cell migration. Cell apoptosis was measured by flow cytometry. The protein and mRNA expressions of matrix metalloproteinase-9 (MMP-9) and apoptosis-related factor Bax were detected by qRT-PCR and Western blot. The expressions of cleaved caspase-3 and cleaved caspase-9 were also determined by Western blot. Results. (1) CCK-8 results showed that the proliferative activity of DU145 cells was significantly decreased with the increase of SPUP treatment concentration (P<0.05) in a dose-dependent manner and that the inhibitory effect of SPUP was most significant at 72 h (P<0.05) as compared with the control group; (2) the migration rate of SPUP-treated cells was significantly decreased (P<0.05) as compared with the control group. And the results of qRT-PCR and Western blot assays showed that SPUP inhibited the expression of MMP-9 in DU145 cells; (3) compared with the control group, the SPUP-treated groups had increased apoptosis of the cells. The expressions of apoptosis-related factors cleaved caspase-3, cleaved caspase-9, and Bax were upregulated (P<0.05), and the mRNA expression of Bax was increased (P<0.05). Conclusion. SPUP showed an antitumor activity in prostatic cancer, and the underlying mechanism may be pertaining to inhibition of migration, proliferation, and induction of apoptosis of cancer cells.

Funder

Shanghai Health and Family Planning Commission

Publisher

Hindawi Limited

Subject

Polymers and Plastics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3