Tensile Fracture Behavior of Corroded Pipeline: Part 1—Experimental Characterization

Author:

Yang Yuchao1ORCID,Liu Feng1ORCID,Xi Feng2ORCID

Affiliation:

1. Shandong University of Science and Technology, Shandong Provincial Key Laboratory of Civil Engineering Disaster Prevention and Mitigation, Qingdao 266590, China

2. School of Civil Engineering, Shandong Jianzhu University, Jinan 250101, China

Abstract

The understanding of the axial tensile behavior of environmentally corroded pipelines is of great significance for the design, maintenance, and evaluation of such structures. This article presents some experimental data recorded from 210 tensile tests on pipe, which were corroded from grade of 10% to 70% by electrochemical accelerated corrosion method. The fracture modes show that, for the uncorroded pipe, the fracture frequently occurs in the middle of the specimen and then propagates perpendicular to the loading direction. However, for the corroded pipe, the crack’s position, evolution angle, and path have strong randomness. The comparative analysis based on the macroscopic stress-strain relationship shows that the rapid decrease of the yield stress, ultimate strength, and strain at the fracture for corroded pipe are correlated with the fracture patterns; i.e., the fracture patterns of pipe are changed from uniform to scattered with the continuous increase of the corrosion rate. The reduction factor based on experimental data is recommended for the consideration of the corrosion effect on the tensile strength of the steel pipe. Discussion on the tensile capacity during the service time is also presented.

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

Subject

General Engineering,General Materials Science

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3