Death-Associated Protein Kinase 1 (DAPK1) Protects against Myocardial Injury Induced by Myocardial Infarction in Rats via Inhibition of Inflammation and Oxidative Stress

Author:

Zhang Jun1ORCID,Zhang Jing1,Zhou Bo1,Jiang Xiaojing1,Tang Yanrong1,Zhang Zhenzhen1

Affiliation:

1. Department of Cardiology, Chengdu First People’s Hospital, Chengdu, China

Abstract

Objective. Heart failure and ventricular remodeling after acute myocardial infarction (AMI) are important factors affecting the prognosis of patients. Therefore, we expected to explore the therapeutic target of AMI by studying the effect of death-associated protein kinase 1 (DAPK1) on AMI rat model. Materials and Methods. We used male Sprague-Dawley rats to make AMI model, and after 1, 3, 7, and 14 d, we detect the success rate of modeling and the expression change of DAPK1 through 2, 3, 5-triphenyl tetrazolium chloride staining, myocardial injury markers detection, echocardiographic detection, and histological experiment. In addition, we determined the effect of DAPK1 on AMI by subcutaneous injection of the DAPK1 inhibitor (TC-DAPK 6). The effect of DAPK1 on cardiomyocytes has also been verified in cell experiments on H9c2 cells. Results. The expression of DAPK1 in AMI rats was significantly higher than that in sham group, and it increased with time. The expression of inflammatory factors (interleukin- (IL-) 1β, IL-6, and tumor necrosis factor-α) in AMI rats treated by TC-DAPK 6 was reduced. In addition, TC-DAPK 6 also reduced the activity of malonaldehyde and increased the activities of superoxide dismutase, glutathione, and catalase. The expression of antioxidant molecules such as peroxiredoxin1/4 and glutathione peroxidase1/3 was also promoted by TC-DAPK 6. In H9c2 cells, TC-DAPK 6 also reduced its oxidative stress level. Conclusions. The increase of DAPK1 may be related to the pathogenesis of AMI. DAPK1 inhibitors protect cardiomyocytes from AMI-induced myocardial injury by reducing levels of inflammation and oxidative stress in myocardial tissue and cells.

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

Subject

Biochemistry (medical),Clinical Biochemistry,Genetics,Molecular Biology,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3