Network Data Mining Algorithm of Associated Users Based on Multi-Information Fusion

Author:

Wang Yuechun1ORCID,Zhang Suzhen1ORCID,Zhang Shaofang1ORCID

Affiliation:

1. ShiJiaZhuang Posts and Telecommunications Technical College, Shijiazhuang, Hebei 050021, China

Abstract

To explore how related users can optimize the network mining algorithm, the author proposes a related user mining algorithm based on the fusion of user attributes and user relationships. This method recommends key technical problems and solutions based on information represented by multi-information fusion and explores research on associated user network data mining algorithms. Research has shown that the associated user network data mining algorithm based on multi-information fusion is 65% higher than previous methods. AUMA-MRL has good performance under different network overlaps. Also, since the node embedding of the AUMA-MRL algorithm is obtained by neighborhood sampling, for new nodes in the network, the algorithm can quickly obtain the new node embedding, as well as the similarity vector between the new node and the rest of the nodes in the network, therefore, the associated users of newly added nodes in the network can be quickly mined, and the robustness of the mining algorithm of associated users in the network is enhanced. Compared with the existing classical algorithms, the recall rate of the proposed algorithm is increased by 17.5% on average, which can effectively mine the associated users in the network.

Publisher

Hindawi Limited

Subject

Computer Networks and Communications,Information Systems

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3