Hybrid Rider Optimization with Deep Learning Driven Biomedical Liver Cancer Detection and Classification

Author:

Al Duhayyim Mesfer1ORCID,Mengash Hanan Abdullah2,Marzouk Radwa2,Nour Mohamed K3,Mahgoub Hany45,Althukair Fahd6,Mohamed Abdullah7

Affiliation:

1. Department of Computer Science, College of Sciences and Humanities-Aflaj, Prince Sattam Bin Abdulaziz University, Al-Kharj, Saudi Arabia

2. Department of Information Systems, College of Computer and Information Sciences, Princess Nourah Bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia

3. Department of Computer Sciences, College of Computing and Information System, Umm Al-Qura University, Mecca, Saudi Arabia

4. Department of Computer Science, College of Science & Art at Mahayel, King Khalid University, Abha, Saudi Arabia

5. Department of Computer Science, Faculty of Computers and Information, Menoufia University, Shibin Al Kawm, Egypt

6. Department of Electrical Engineering and Computer Sciences, College of Engineering, University of CA, Berkeley, USA

7. Research Center, Future University in Egypt, New Cairo 11845, Egypt

Abstract

Biomedical engineering is the application of the principles and problem-solving methods of engineering to biology along with medicine. Computation intelligence is the study of design of intelligent agents which are systems acting perceptively. The computation intelligence paradigm offers more advantages to the enhancement and maintenance of the field of biomedical engineering. Liver cancer is the major reason of mortality worldwide. Earlier-stage diagnosis and treatment might increase the survival rate of liver cancer patients. Manual recognition of the cancer tissue is a time-consuming and difficult task. Hence, a computer-aided diagnosis (CAD) is employed in decision making procedures for accurate diagnosis and effective treatment. In contrast to classical image-dependent “semantic” feature evaluation from human expertise, deep learning techniques could learn feature representation automatically from sample images using convolutional neural network (CNN). This study introduces a Hybrid Rider Optimization with Deep Learning Driven Biomedical Liver Cancer Detection and Classification (HRO-DLBLCC) model. The proposed HRO-DLBLCC model majorly focuses on the identification of liver cancer in the medical images. To do so, the proposed HRO-DLBLCC model employs preprocessing in two stages, namely, Gabor filtering (GF) based noise removal and watershed transform based segmentation. In addition, the proposed HRO-DLBLCC model involves NAdam optimizer with DenseNet-201 based feature extractor to generate an optimal set of feature vectors. Finally, the HRO algorithm with recurrent neural network–long short-term memory (RNN-LSTM) model is applied for liver cancer classification, in which the hyperparameters of the RNN-LSTM model are tuned by the use of HRO algorithm. The HRO-DLBLCC model is experimentally validated and compared with existing models. The experimental results assured the promising performance of the HRO-DLBLCC model over recent approaches.

Funder

King Khalid University

Publisher

Hindawi Limited

Subject

General Mathematics,General Medicine,General Neuroscience,General Computer Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3