Detection of Adulteration in Food Using Recurrent Neural Network with Internet of Things

Author:

Nagamalla Vishwesh1,Kumar B. Muthu2ORCID,Janu Neha3,Preetham Anusha4,Parambil Gangadharan Syam Machinathu5,Alqahtani Mejdal A.6ORCID,Ratna Rajnish7ORCID

Affiliation:

1. Department of Electronics and Computer Engineering (ECM), Sreenidhi Institute of Science and Technology, Hyderabad, India

2. School of Computing and Information Technology, REVA University, Bengaluru, Karnataka, India

3. Department of Computer Science and Engineering, Swami Keshvanand Institute of Technology, Management and Gramothan (SKIT), Jagatpura, Jaipur, Rajasthan 302017, India

4. Department of Information Science Engineering, Dayananda Sagar Academy of Technology and Management, Karnataka, India

5. General Mills, 1 General Mills Blvd, Golden Valley, MN 55426, USA

6. Department of Industrial Engineering, King Saud University, Riyadh, Saudi Arabia

7. Gedu College of Business Studies, Royal University of Bhutan, Thimphu, Bhutan

Abstract

Food is an essential need for human survival. Throughout history, food has been recognised as a crucial need for people in order to maintain good health as well as to treat illness. As with all living things, it is one of the most basic necessities that man has as well as those of all other living creatures. In a recent publication, it was said that an extremely affordable, robust, and biocompatible impedance sensor that serves as a fractional-order element has been created and may be used to distinguish milk and tainted milk. A complete study on milk adulteration includes more than 160 academic articles on the topic. A comprehensive study on milk adulteration is available online. Specifically, the goal of this research is to discover various types of milk adulterants, different approaches for detecting each kind of adulterant, as well as the health hazards associated with milk product adulteration. In the proposed project, the fractional-order element would be investigated for its potential use in the detection of milk adulteration. With this fractional-order element-based impedance sensor, you can distinguish between different types of contaminated milk and different types of faking it, which is quite useful in the detection and differentiation of fake and real milk. According to the researchers, they have created a low-cost, user-friendly instrumentation system for detecting milk adulteration. They hope to commercialise it soon. An automated sensing system for the detection of synthetic milk, based on a microcontroller, has been created in order to reduce the reliance on specialised labour and to improve efficiency. In order to model the sensor, the dipole layer capacitance at the interface of the impedance sensor immersed in milk and the contaminated milk must be taken into account throughout the modelling process. In this study, an electrical equivalent circuit is built, and the correctness of the circuit is shown by both theoretical and experimental investigation. The detection of milk adulteration is classified with the use of Recurrent Neural Networks, and the status is updated in the cloud server with the help of the Internet of Things and Recurrent Neural Networks. It is estimated that the proposed work will have an accuracy rate of 92.31 percent, a sensitivity rate of 75.23 percent, and a specificity rate of 90.12 percent, all of which are higher than the present rate.

Funder

King Saud University

Publisher

Hindawi Limited

Subject

Safety, Risk, Reliability and Quality,Food Science

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3