Genetically Engineered Macrophages Derived from iPSCs for Self-Regulating Delivery of Anti-Inflammatory Biologic Drugs

Author:

Klimak Molly1234ORCID,Guilak Farshid1234ORCID

Affiliation:

1. Department of Orthopaedic Surgery, Washington University, St. Louis, MO 63110, USA

2. Shriners Hospitals for Children–St. Louis, St. Louis, MO 63110, USA

3. Department of Biomedical Engineering, Washington University, St. Louis, MO 63110, USA

4. Center of Regenerative Medicine, Washington University, St. Louis, MO 63110, USA

Abstract

In rheumatoid arthritis, dysregulated cytokine signaling has been implicated as a primary factor in chronic inflammation. Many antirheumatic and biological therapies are used to suppress joint inflammation, but despite these advances, effectiveness is not universal, and delivery is often at high doses, which can predispose patients to significant off-target effects. During chronic inflammation, the inappropriate regulation of signaling factors by macrophages accelerates the progression of disease by driving an imbalance of inflammatory cytokines, making macrophages an ideal cellular target. To develop a macrophage-based therapy to treat chronic inflammation, we engineered a novel induced pluripotent stem cell (iPSC)-derived macrophage capable of delivering soluble TNF receptor 1 (sTNFR1), an anti-inflammatory biologic inhibitor of tumor necrosis factor alpha (TNF-α), in an autoregulated manner in response to TNF-α. Murine iPSCs were differentiated into macrophages (iMACs) over a 17-day optimized protocol with continued successful differentiation confirmed at key timepoints. Varying inflammatory and immunomodulatory stimuli demonstrated traditional macrophage function and phenotypes. In response to TNF-α, therapeutic iMACs produced high levels of sTNFR1 in an autoregulated manner, which inhibited inflammatory signaling. This self-regulating iMAC system demonstrated the potential for macrophage-based drug delivery as a novel therapeutic approach for a variety of chronic inflammatory diseases.

Funder

Shriners Hospitals for Children

Publisher

Hindawi Limited

Subject

Biomedical Engineering,Biomaterials,Medicine (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3