Similarity Criteria of Water Drive Physical Simulation of Pressure-Sensitive Fractured Reservoirs

Author:

Bin Nie1ORCID,Shaohua Gu2ORCID,Sijia Zeng1ORCID

Affiliation:

1. School of Petroleum Engineering, Yangtze University, Wuhan, Hubei 430100, China

2. Petroleum Exploration & Production Research Institute, SINOPEC, Beijing 100083, China

Abstract

A mathematical equation of water drive physical simulation of pressure-sensitive fractured reservoirs was established based on previous research results. In this study, the similarity criteria of water drive physical simulation of pressure-sensitive fractured reservoirs were derived according to the similarity theory. First of all, based on the three-dimensional differential equation of rock mechanics, a dimensionless analysis was conducted to determine the similarity relationship between the displacement of oil by water of pressure-sensitive fractured reservoirs, the similarity criterion was obtained, and the similarity criteria were formed. Secondly, according to the similarity criterion, the similar relationship between the stress-strain fields of the real object and the simulated object was worked out. Thirdly, the finite element software COMSOL Multiphysics was applied to model and calculate the multifield coupling process in the percolation of pressure-sensitive fractured reservoirs, verifying the correctness of the established similarity criteria and similarity relationship. The verifying results shows that the similarity between the physical model and the actual model can be realized by magnifying the geometric size N times in a certain direction and adjusting the load and boundary conditions according to the similarity principle, which can be used for the design of the pressure-sensitive fractured reservoir simulation model for a physical indoor test.

Funder

PetroChina Innovation Foundation

Publisher

Hindawi Limited

Subject

General Earth and Planetary Sciences

Reference20 articles.

1. The advance in the scaling criteria of physical simulation for the complex flows system in reservoir;Y. H. Bai;Advances in Mechanics,2009

2. Study on similarity criteria of physical modeling for displacement of oil by water;M. Gu;Special Oil & Gas Reservoirs,2016

3. Similar theory, similar rule and data conversion software for water drive modeling;X. Y. Kong;Petroleum Exploration and Development,1997

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3