Integrated Analysis of miRNA-mRNA Interaction Network in Porcine Granulosa Cells Undergoing Oxidative Stress

Author:

Du Xing1,Li Qiqi1,Cao Qiuyu1,Wang Siqi1,Liu Honglin1,Li Qifa1ORCID

Affiliation:

1. College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China

Abstract

Oxidative stress (OS), a common intracellular phenomenon induced by excess reactive oxygen species (ROS) generation, has been shown to be associated with mammalian ovarian follicular development blockage and granulosa cell (GC) impairment. However, the mechanism involved in these effects remains unknown, and the effect of OS on the transcriptome profiles in porcine GCs has not been fully characterized. In this study, we found that hydrogen peroxide-mediated oxidative stress induced porcine GC apoptosis and impaired cell viability. Moreover, RNA-seq analysis showed that oxidative stress induced dramatic changes in gene expression in porcine GCs. A total of 2025 differentially expressed genes (DEGs) were identified, including 1940 DEmRNAs and 55 DEmiRNAs. Functional annotation showed that the DEGs were mainly associated with cell states and function regulation. In addition, multiple hub genes (FOXO1, SOD2, BMP2, DICER1, BCL2L11, FZD4, ssc-miR-424, and ssc-miR-27b) were identified by constructing protein-protein interaction and DEmiRNA-DEmRNA regulatory networks. Furthermore, a gene-pathway-function coregulatory network was established and demonstrated that these hub genes were enriched in FoxO, TGF-β, Wnt, PIK3-Akt, MAPK, and cAMP signaling pathways, which play important roles in regulating cell apoptosis, cell proliferation, stress responses, and hormone secretion. The current research provides a comprehensive perspective of the effects of oxidative stress on porcine GCs and also identifies potential therapeutic targets for oxidative stress-induced female infertility.

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

Subject

Cell Biology,Ageing,General Medicine,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3