Th17 Cells Pathways in Multiple Sclerosis and Neuromyelitis Optica Spectrum Disorders: Pathophysiological and Therapeutic Implications

Author:

Passos Giordani Rodrigues Dos1,Sato Douglas Kazutoshi123,Becker Jefferson1,Fujihara Kazuo3

Affiliation:

1. Brain Institute and Department of Neurology, Faculty of Medicine, Pontifical Catholic University of Rio Grande do Sul (PUCRS), Avenida Ipiranga 6690, 90610-000 Porto Alegre, RS, Brazil

2. Department of Neurology and LIM-15, Faculty of Medicine, University of Sao Paulo (USP), Avenida Dr. Arnaldo 455, 01246-903 São Paulo, SP, Brazil

3. Department of Multiple Sclerosis Therapeutics, Tohoku University Graduate School of Medicine, 1-1 Seiryo-machi, Aobaku, Sendai, Miyagi 980-8574, Japan

Abstract

Several animal and human studies have implicated CD4+ T helper 17 (Th17) cells and their downstream pathways in the pathogenesis of central nervous system (CNS) autoimmunity in multiple sclerosis (MS) and neuromyelitis optica spectrum disorders (NMOSD), challenging the traditional Th1-Th2 paradigm. Th17 cells can efficiently cross the blood-brain barrier using alternate ways from Th1 cells, promote its disruption, and induce the activation of other inflammatory cells in the CNS. A number of environmental factors modulate the activity of Th17 pathways, so changes in the diet, exposure to infections, and other environmental factors can potentially change the risk of development of autoimmunity. Currently, new drugs targeting specific points of the Th17 pathways are already being tested in clinical trials and provide basis for the development of biomarkers to monitor disease activity. Herein, we review the key findings supporting the relevance of the Th17 pathways in the pathogenesis of MS and NMOSD, as well as their potential role as therapeutic targets in the treatment of immune-mediated CNS disorders.

Funder

Japan Society for the Promotion of Science

Publisher

Hindawi Limited

Subject

Cell Biology,Immunology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3