Analysis of Vascular Mechanical Characteristics after Coronary Degradable Stent Implantation

Author:

Ding Hao12ORCID,Zhang Ying2,Liu Yujia2,Shi Chunxun2,Nie Zhichao2,Liu Haoyu2,Gu Yuling3

Affiliation:

1. School of Medical Instrument, Shanghai University of Medicine & Health Sciences, Shanghai 201318, China

2. School of Medical Instrument and Food Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China

3. Research and Development Department, Shanghai Naturethink Life Science & Technology Co., Ltd., Shanghai 201809, China

Abstract

Purpose. To explore the effect of vascular stress changes on endothelial function recovery and vascular restenosis inhibition, under the condition of dynamic degradation process of the degradable stent. Methods. Fitting the material parameters of the hyperelastic vascular constitutive relationship, the stress distribution of the intima of the blood vessel before the stent was implanted and during the dynamic degradation was calculated by numerical simulation. In vitro culture experiments were carried out, and the stretch ratios of the silicone chamber were set to 0%, 5%, 10%, and 15%, respectively, to simulate the effects of different degradation stages on the growth state of endothelial cells. Results. After the stent was completely degraded, the circumferential intimal stress (strain) of the vessel was recovered to 0.137 MPa, 5.5%, which was close to the physiological parameters (0.122 MPa, 4.8%) before stent implantation. In vitro experiments showed that the endothelial cell survival rate was the highest under the condition of circumferential stress (strain) of 0.1 MPa, 5%, and all adhesion growth could be achieved. Conclusions. With the occurrence of degradation process of the stent, the circumferential stress (strain) of the intima was recovered to a range close to physiological parameters, which promotes the growth of endothelial cells. The recovery of intimal function can effectively inhibit the process of vascular restenosis. The results can provide a theoretical basis and experimental platform for the study of coronary intervention for the treatment of vascular restenosis.

Funder

Fudan University

Publisher

Hindawi Limited

Subject

General Immunology and Microbiology,General Biochemistry, Genetics and Molecular Biology,General Medicine

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3