Development of Pogo Pin-Based Holding and Release Mechanism for Deployable Solar Panel of CubeSat

Author:

Bhattarai Shankar1,Kim Hongrae2,Jung Sung-Hoon3,Oh Hyun-Ung1ORCID

Affiliation:

1. Space Technology Synthesis Laboratory, Department of Aerospace Engineering, Chosun University, Gwangju, Republic of Korea

2. Soletop Co. Ltd., 409 Expo-ro, Yuseong-gu, Daejeon, Republic of Korea

3. Agency for Defense Development, Yuseong-gu, Daejeon, Republic of Korea

Abstract

CubeSats are revolutionary to the space industry and are transforming space exploration which enables the next generation of scientists and engineers to complete all phases of space missions. Deployable solar panels have been widely used for the generation of enough power in CubeSats due to their limited volume area for solar cell integration. In general, the cable cutting release mechanism have been used in 1U-3U small satellites because of its simplicity and low cost. However, this mechanism has a low constraint force and is unable to apply constraints along the in-plane and out-of-plane directions. In this study, for the improvement of the conventional cable cutting mechanism, a spring-loaded pogo pin-based nichrome burn wire holding and release mechanism (HRM) was proposed and fabricated. The pogo pin constitutes an immensely attractive function for the holding and release mechanism of solar panels because it works as an electrical interface to provide power, a separation spring to initiate the reaction force to deploy the panels, and a status switch to determine deployments. In addition, the proposed mechanism guarantees the loading capability along the in-plane and out-of-plane directions of solar panels, the synchronous release of multiple panels, and a handling simplicity that differentiates it from the conventional mechanism. The design feasibility, structural safety, and reliability of the mechanism were verified through functionality tests and launch and on-orbit environmental tests. The proposed pogo pin-based holding and release mechanism would be equally applicable for other CubeSat deployable appendages.

Funder

Small and Medium Business Administration

Publisher

Hindawi Limited

Subject

Aerospace Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3