Bifurcations, Complex Behaviors, and Dynamic Transition in a Coupled Network of Discrete Predator-Prey System

Author:

Huang Tousheng1ORCID,Zhang Huayong1ORCID,Ma Shengnan1ORCID,Pan Ge1ORCID,Wang Zhaodeng1ORCID,Huang Hai1ORCID

Affiliation:

1. Research Center for Engineering Ecology and Nonlinear Science, North China Electric Power University, Beijing 102206, China

Abstract

The nonlinear dynamics of predator-prey systems coupled into network is an important issue in recent biological advances. In this research, we consider each node of the coupled network represents a discrete predator-prey system, and the network dynamics is investigated. By applying Jacobian matrix, center manifold theorem and bifurcation theorems, stability of fixed points, flip bifurcation and Neimark-Sacker bifurcation of the discrete predator-prey system are analyzed. Via the method of Lyapunov exponents, the nonchaos-chaos transition of the coupled network along the routes to chaos induced by bifurcations is determined. Numerical simulations are performed to demonstrate the bifurcations, various attractors and dynamic transitions of the coupled network. Via comparison, we find that the coupled network exhibits far richer and more complex behaviors than single predator-prey system, including period-doubling cascades in orbits of period-2, period-4, period-8, invariant closed curves, dynamic windows for periodic orbits and invariant curves, quasiperiodic orbits, tori, and chaotic sets. Moreover, the attractors of the coupled network show more diverse and complicated structures. These results may provide a new perspective on the predator-prey dynamics in complex networks.

Funder

National Water Pollution Control and Treatment Science and Technology Major Project

Publisher

Hindawi Limited

Subject

Modelling and Simulation

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3