Mst2 Overexpression Inhibits Thyroid Carcinoma Growth and Metastasis by Disrupting Mitochondrial Fitness and Endoplasmic Reticulum Homeostasis

Author:

Zhang Haichao1,Qu Xin1,Han Lu1,Di Xu1ORCID

Affiliation:

1. Department of Thyroid and Breast Surgery, Tianjin Fourth Central Hospital, The Fourth Central Hospital Affiliated to Nankai University, The Fourth Center Clinical College of Tianjin Medical University, Tianjin 300140, China

Abstract

Although the incidence of thyroid carcinoma has increased over the past several decades, it has an excellent prognosis and overall 5-year survival, with a stable mortality rate, except in cases with advanced stages or rare malignant tumor types. Biomarkers have emerged as effective targets of molecular therapy against thyroid carcinoma due to their rapid and convenient detection; however, there has been little clinical application. Macrophage stimulating 2 (Mst2) is a proapoptotic protein with implications in carcinogenesis and metastasis. We found that Mst2 overexpression-induced endoplasmic reticulum (ER) stress in MDA-T32 thyroid carcinoma cells, accompanied by elevated caspase-12 activity, increased apoptotic rate, and reduced cell viability. In addition, Mst2 overexpression contributed to mitochondrial damage, as evidenced by increased mitochondrial oxidative stress and activated the mitochondrial apoptotic pathway. Inhibition of the JNK pathway abolished these effects. These results show Mst2 to be a novel tumor suppressor that induces mitochondrial dysfunction and ER stress via the JNK pathway. Thus, Mst2 could potentially serve as a biomarker for developing targeted therapy against thyroid carcinoma.

Publisher

Hindawi Limited

Subject

Oncology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3