Design of Novel Ultrabroadband Printed Antenna and Its Efficient Optimization Using Self-Adaptive Hybrid Differential Evolution Algorithm

Author:

Gao Tian-Ye1ORCID,Jiao Yong-Chang1ORCID,Zhang Yi-Xuan1ORCID

Affiliation:

1. National Key Laboratory of Antennas and Microwave Technology, Xidian University, Xi’an, Shaanxi 710071, China

Abstract

A novel compact ultra-broadband-modified fork-shaped printed antenna is optimized efficiently by using a self-adaptive hybrid differential evolution (SHDE) algorithm. Firstly, a novel compact ultra-broadband-modified fork-shaped printed antenna structure is proposed. The antenna with more compact size consists of a modified fork-shaped radiator and a modified ground plane, which can cover a very wide operating frequency band. The antenna is fed by a step-shaped microstrip line, and the modified ground plane consists of some rectangular slots and an L-shaped stub. Then, the SHDE algorithm is used to determine structural dimensions of the proposed antenna, and the antenna’s performance is optimized while maintaining a cost-effective computation time. The optimized antenna with only 11.8 mm × 19.7 mm size covers -10 dB reflection coefficient bandwidth of 147.6% from 3.08 to 20.46 GHz. Finally, the antenna prototype is fabricated, and the measured results basically agree with the simulated ones. The proposed antenna can be viewed as an excellent candidate for realizing ultrabroadband transmission technology.

Funder

Fundamental Research Funds for the Central Universities

Publisher

Hindawi Limited

Subject

Electrical and Electronic Engineering,Computer Graphics and Computer-Aided Design,Computer Science Applications

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Irregular array optimization for beamforming with a polar coordinate-based partition coding approach;Measurement Science and Technology;2024-09-10

2. Metadevice for Electromagnetic Cloaking With Monitors in Complex Space;International Journal of RF and Microwave Computer-Aided Engineering;2024-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3