Compositional Changes for Reduction of Polymerisation-Induced Shrinkage in Holographic Photopolymers

Author:

Cody D.12ORCID,Moothanchery M.1,Mihaylova E.13ORCID,Toal V.12ORCID,Mintova S.4,Naydenova I.12ORCID

Affiliation:

1. Centre for Industrial and Engineering Optics, Dublin Institute of Technology, Dublin 8, Ireland

2. School of Physics, Faculty of Science, Dublin Institute of Technology, Dublin 8, Ireland

3. Department of Mathematics, Informatics and Physics, Agricultural University, Plovdiv, Bulgaria

4. LCS, CRISMAT, University of Caen, 6 boulevard du Maréchal Juin, 14050 Caen Cedex, France

Abstract

Polymerisation-induced shrinkage is one of the main reasons why many photopolymer materials are not used for certain applications including holographic optical elements and holographic data storage. Here, two compositional changes for the reduction of shrinkage in an acrylamide-based photopolymer are reported. A holographic interferometric technique was used to study changes in the dynamics of the shrinkage processes occurring in the modified photopolymer during holographic recording in real time. Firstly, the effect of the replacement of the acrylamide monomer in the photopolymer composition with a larger monomer molecule, diacetone acrylamide, on polymerisation-induced shrinkage has been studied. A reduction in relative shrinkage of 10–15% is obtained using this compositional change. The second method tested for shrinkage reduction involved the incorporation of BEA-type zeolite nanoparticles in the acrylamide-based photopolymer. A reduction in relative shrinkage of 13% was observed for acrylamide photopolymer layers doped with 2.5% wt. BEA zeolites in comparison to the undoped photopolymer.

Funder

Irish Research Council

Publisher

Hindawi Limited

Subject

General Engineering,General Materials Science

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3