Chaos Control in Mechanical Systems

Author:

Savi Marcelo A.1,Pereira-Pinto Francisco Heitor I.2,Ferreira Armando M.2

Affiliation:

1. Universidade Federal do Rio de Janeiro, COPPE, Department of Mechanical Engineering, 21.941.972, Rio de Janeiro, RJ, P.O. Box 68.503, Brazil

2. Department of Mechanical and Materials Engineering, Instituto Militar de Engenharia, 22.290.270, Rio de Janeiro, RJ, Brazil

Abstract

Chaos has an intrinsically richness related to its structure and, because of that, there are benefits for a natural system of adopting chaotic regimes with their wide range of potential behaviors. Under this condition, the system may quickly react to some new situation, changing conditions and their response. Therefore, chaos and many regulatory mechanisms control the dynamics of living systems, conferring a great flexibility to the system. Inspired by nature, the idea that chaotic behavior may be controlled by small perturbations of some physical parameter is making this kind of behavior to be desirable in different applications. Mechanical systems constitute a class of system where it is possible to exploit these ideas. Chaos control usually involves two steps. In the first, unstable periodic orbits (UPOs) that are embedded in the chaotic set are identified. After that, a control technique is employed in order to stabilize a desirable orbit. This contribution employs the close-return method to identify UPOs and a semi-continuous control method, which is built up on the OGY method, to stabilize some desirable UPO. As an application to a mechanical system, a nonlinear pendulum is considered and, based on parameters obtained from an experimental setup, analyses are carried out. Signals are generated by numerical integration of the mathematical model and two different situations are treated. Firstly, it is assumed that all state variables are available. After that, the analysis is done from scalar time series and therefore, it is important to evaluate the effect of state space reconstruction. Delay coordinates method and extended state observers are employed with this aim. Results show situations where these techniques may be used to control chaos in mechanical systems.

Funder

Conselho Nacional de Desenvolvimento Científico e Tecnológico

Publisher

Hindawi Limited

Subject

Mechanical Engineering,Mechanics of Materials,Geotechnical Engineering and Engineering Geology,Condensed Matter Physics,Civil and Structural Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3