Network Pharmacology-Based Strategy to Investigate the Mechanisms of Cibotium barometz in Treating Osteoarthritis

Author:

Chen Guang-Yao12,Wang Yi-Fei1ORCID,Yu Xin-Bo12ORCID,Liu Xiao-Yu1ORCID,Chen Jia-Qi12ORCID,Luo Jing23ORCID,Tao Qing-Wen23ORCID

Affiliation:

1. Beijing University of Chinese Medicine, Beijing 100029, China

2. Department of TCM Rheumatology, China-Japan Friendship Hospital, Beijing 100029, China

3. Beijing Key Lab for Immune-Mediated Inflammatory Diseases, China-Japan Friendship Hospital, Beijing 100029, China

Abstract

Cibotium barometz is a representative tonifying kidney drug and is widely used for osteoarthritis (OA) in traditional Chinese medicine. However, its regulatory mechanisms in treating OA remain to be sufficiently investigated. The main chemical components of Cibotium barometz were screened through the TCMID database and the corresponding targets were acquired through SwissTargetPrediction. The OA-related targets were obtained from the OMIM, Genecards, Genebank, TTD, and DisGeNET databases. The prediction of key targets and pathways of Cibotium barometz in the treatment of OA was achieved by constructing a compounds-targets network and performing KEGG enrichment analysis. The OA model rats were established by the Hulth method and used to explore the protective effect of Cibotium barometz via cartilage pathological assessment. In vitro models of OA were built by the proinflammatory factor interleukin-1β (IL-1β) induced SW1353 cells and used to validate the mechanisms predicted by network pharmacology. Network pharmacology results suggested that the therapeutic effects of Cibotium barometz were closely related to matrix metalloproteinase (MMP)-1, 3, 13 and inflammation-related gene COX2, which are regulated by the NFκB pathway. In vivo experiments revealed that Cibotium barometz could effectively restrain cartilage from degeneration and inhibit the mRNA expression of MMP-1, MMP-3, MMP-13, and COX2 in cartilage. In vitro experiments indicated that Cibotium barometz water extract (CBWE) could significantly inhibit the expression of MMP-1, MMP-3, MMP-13, and PGE2 in IL-1β-induced SW1353 cells and markedly prevent the translocation of NFκB p65 from the cytoplasm to the nuclei and decrease its phosphorylation level. After small-interfering RNA (siRNA) was used to suppress the synthesis of NFκB p65 to block NFκB signaling pathway, the ability of CBWE to inhibit MMP-1, MMP-3, MMP-13, and PGE2 was greatly reduced. Cibotium barometz has a chondroprotective effect on OA by inhibiting the response to inflammation and substrate degradation, and the related mechanism is associated with the inhibition of the NFκB pathway.

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

Subject

Complementary and alternative medicine

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3