Evolution of Pore Characteristics for Bentonite Modified by an Ionic Soil Stabilizer during Hydration Processes

Author:

Huang Wei1ORCID,Feng Zili1,Fu Huanran1,Xiang Wei2

Affiliation:

1. Faculty of Airport Engineering and Transportation Management, Civil Aviation Flight University of China, Guanghan 618307, China

2. Faculty of Engineering, China University of Geosciences, Wuhan 430074, China

Abstract

An ionic soil stabilizer (ISS) is used to reinforce clay soils because the ISS can regulate the hydration processes and microstructures of clays. To evaluate the regulation of ISS, natural bentonite was modified by ISS at different concentrations in this research. Water vapour adsorption and X-ray diffraction (XRD) were carried out to interpret the hydration mechanism of bentonite. Meanwhile, an associated analysis between hydration pore structures and hydration mechanisms was implemented through variation of pore characteristic tests at different relative humidities (RHs) to distinguish multiscale pore adsorption of water during the corresponding hydration process. In addition, the pore characteristics were studied via XRD, nitrogen adsorption, and mercury injection tests. Finally, the origins that adsorbed water and pore structures changed by adding ISS were discussed. The results showed that for calcium bentonite, the cations hydrated first in the range of 0 < RH < 0.45 ~ 0.55 , accompanied by the expansion of micropores. Then, adsorption occurred on the basal surface of the crystal layer in the range of 0.45 ~ 0.55 < RH < 0.8 ~ 0.9 , with water mainly adsorbed into the mesopores. With further hydration when RH > 0.8 ~ 0.9 , diffused double layer (DDL) water ceaselessly entered the macropores. Both adsorbed water and multiscale pore size decreased when ISS was added to bentonite. The origins of the reduction were the regulation of ISS to exchangeable cations and the basal surface of the crystal layer.

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

Subject

Surfaces and Interfaces,General Chemical Engineering,General Chemistry

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3