Bayesian and Non-Bayesian Reliability Estimation of Stress-Strength Model for Power-Modified Lindley Distribution

Author:

Al-Babtain Abdulhakim A.1ORCID,Elbatal I.2ORCID,Almetwally Ehab M.34ORCID

Affiliation:

1. Department of Statistics and Operations Research, King Saud University, Riyadh 11362, Saudi Arabia

2. Department of Mathematics and Statistics-College of Science, Imam Mohammad Ibn Saud Islamic University, Riyadh, Saudi Arabia

3. Department of Statistics, Faculty of Business Administration, Delta University of Science and Technology, Gamasa, Egypt

4. Faculty of Graduate Studies for Statistical Research, Cairo University, Giza 12613, Egypt

Abstract

A two-parameter continuous distribution, namely, power-modified Lindley (PML), is proposed. Various structural properties of the new distribution, including moments, moment-generating function, conditional moments, mean deviations, mean residual lifetime, and mean past lifetime, are provided. The reliability of a system is discussed when the strength of the system and the stress imposed on it are independent. Maximum-likelihood estimation of the parameters and their estimated asymptotic standard errors are derived. Bayesian estimation methods of the parameters with independent gamma prior are discussed based on symmetric and asymmetric loss functions. We proposed using the MCMC technique with the Metropolis–Hastings algorithm to approximate the posteriors of the stress-strength parameters for Bayesian calculations. The confidence interval for likelihood and the Bayesian estimation method is obtained for the parameter of the model and stress-strength reliability. We prove empirically the importance and flexibility of the new distribution in modeling with real data applications.

Funder

King Saud University

Publisher

Hindawi Limited

Subject

General Mathematics,General Medicine,General Neuroscience,General Computer Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3