Blockchain and K-Means Algorithm for Edge AI Computing

Author:

Qiu Xiaotian12,Yao Dengfeng1ORCID,Kang Xinchen1,Abulizi Abudukelimu3

Affiliation:

1. Beijing Key Laboratory of Information Service Engineering, Beijing Union University, Beijing 100101, China

2. School of Computer Science and Engineering, University of Electronic Science and Technology of China, Chengdu 611731, Sichuan, China

3. Department of Information Management, Xinjiang University of Finance and Economics, Urumqi 830012, Xinjiang, China

Abstract

The current development of blockchain, technically speaking, still faces many key problems such as efficiency and scalability issues, and any distributed system faces the problem of how to balance consistency, availability, and fault tolerance need to be solved urgently. The advantage of blockchain is decentralization, and the most important thing in a decentralized system is how to make nodes reach a consensus quickly. This research mainly discusses the blockchain and K-means algorithm for edge AI computing. The natural pan-central distributed trustworthiness of blockchain provides new ideas for designing the framework and paradigm of edge AI computing. In edge AI computing, multiple devices running AI algorithms are scattered across the edge network. When it comes to decentralized management, blockchain is the underlying technology of the Bitcoin system. Due to its characteristics of immutability, traceability, and consensus mechanism of transaction data storage, it has recently received extensive attention. Blockchain technology is essentially a public ledger. This is done by recording data related to trust management to this ledger. To collaboratively complete artificial intelligence computing tasks or jointly make intelligent group decisions, frequent communication is required between these devices. By integrating idle computing resources in an area, a distributed edge computing platform is formed. Users obtain benefits by sharing their computing resources, and nodes in need complete computing tasks through the shared platform. In view of the identity security problems faced in the sharing process, this article introduces blockchain technology to realize the trust between users. All participants must register a secure identity in the blockchain network and conduct transactions in this security system. A K-means algorithm suitable for edge environments is proposed to identify different degradation stages of equipment operation reflected by multiple types of data. Based on the prediction of the fault state for a single type of data, the algorithm uses the historical data of multiple types of data together with the prediction data to predict the fault stage. During the research process, the average optimization energy consumption of K-means algorithm is 14.6% lower than that of GA. On the basis of designing a resource allocation scheme based on blockchain, the problem of how the participants can realize reliable resource use according to the recorded data on the chain is studied. The article implements the verification of the legality of the use of blockchain resources. In addition, a control node is introduced to master the global real-time information of the network to provide data support for the user’s choice.

Funder

Beijing Municipal Natural Science Foundation

Publisher

Hindawi Limited

Subject

General Mathematics,General Medicine,General Neuroscience,General Computer Science

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3