Repeatability of Perimacular Ganglion Cell Complex Analysis with Spectral-Domain Optical Coherence Tomography

Author:

Ng Dorothy S. K.12,Gupta Preeti12,Tham Yih Chung12,Peck Chye Fong1,Wong Tien Yin123,Ikram Mohammad Kamran13,Cheung Carol Y.123

Affiliation:

1. Singapore Eye Research Institute, Singapore National Eye Centre, Singapore 169856

2. Department of Ophthalmology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597

3. Ophthalmology and Visual Sciences Academic Clinical Programme, Duke-NUS Graduate Medical School, National University of Singapore, Singapore 169857

Abstract

Purpose. To assess the repeatability of spectral-domain optical coherence tomography to measure macular and perimacular ganglion cell complex thicknesses and compare retinal ganglion cell parameters between algorithms.Methods. Ninety-two nonglaucomatous eyes from 92 participants underwent macular and perimacular ganglion cell complex thickness measurement using OCT-HS100 Glaucoma 3D algorithm and these measurements were repeated for 34 subjects. All subjects also had macular ganglion cell-inner plexiform layer thickness measured by Cirrus HD-OCT Ganglion Cell Analysis algorithm. Intraclass correlation coefficient and Pearson’s correlation analyses were performed.Results. Subfields of both macular and perimacular ganglion cell complex thicknesses had high intraclass correlation coefficient values between 0.979 (95% confidence interval [CI]: 0.958–0.989) and 0.981 (95% CI: 0.963, 0.991) and between 0.70 (95% CI: 0.481–0.838) and 0.987 (95% CI: 0.956–0.989), respectively. The overall average ganglion cell complex and macular average ganglion cell-inner plexiform layer thicknesses were strongly correlated(r=0.83,P<0.001).  Conclusions. The assessment of macular and perimacular retinal ganglion cell parameters by OCT-HS100 Glaucoma 3D algorithm is highly repeatable, and strongly correlates to retinal ganglion cell parameters assessed by Ganglion Cell Analysis algorithm. A comprehensive evaluation of retinal ganglion cells may be possible with OCT-HS100.

Publisher

Hindawi Limited

Subject

Ophthalmology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3