Affiliation:
1. Faculty of Applied Mathematics and Mechanics, Perm National Research Polytechnic University, Komsomolsky Ave. 29, Perm 614990, Russia
Abstract
This paper is devoted to derivation of analytic expressions for statistical descriptors of stress and strain fields in heterogeneous media. Multipoint approximations of solutions of stochastic elastic boundary value problems for representative volume elements are investigated. The stress and strain fields are represented in the form of random coordinate functions, for which analytical expressions for the first- and second-order statistical central moments are obtained. Such moments characterize distribution of fields under prescribed loading of a representative volume element and depend on the geometry features and location of components within a volume. The information of the internal geometrical structure is taken into account by means of multipoint correlation functions. Within the framework of the second approximation of the boundary value problem, the correlation functions up to the fifth order are required to calculate the statistical characteristics. Using the method of Green’s functions, analytical expressions for the moments in distinct phases of the microstructure are obtained explicitly in a form of integral equations. Their analysis and comparison with previously obtained results are performed.
Funder
President of Russian Federation for state support of young Russian scientists
Subject
Applied Mathematics,General Physics and Astronomy