Determining the Surfactant Consistent with Concrete in order to Achieve the Maximum Possible Dispersion of Multiwalled Carbon Nanotubes in Keeping the Plain Concrete Properties

Author:

Adresi Mostafa1ORCID,Hassani Abolfazl1ORCID,Javadian Soheila2,Tulliani Jean-Marc3ORCID

Affiliation:

1. Road and Transportation Department, Tarbiat Modares University, Tehran, Iran

2. Chemistry Department, Tarbiat Modares University, Tehran, Iran

3. Applied Science and Technology Department, Politecnico di Torino, Torino, Italy

Abstract

A new surfactant combination compatible with concrete formulation is proposed to avoid unwanted air bubbles created during mixing process in the absence of a defoamer and to achieve the uniform and the maximum possible dispersion of multiwalled carbon nanotubes (MWCNTs) in water and subsequently in concrete. To achieve this goal, three steps have been defined: (1) concrete was made with different types and amount of surfactants containing a constant amount of MWCNTs (0.05 wt%) and the air bubbles were eliminated with a proper defoamer. (2) Finding a compatible surfactant with concrete compositions and eliminating unwanted air bubbles in the absence of a common defoamer are of fundamental importance to significantly increase concrete mechanical properties. In this step, the results showed that the polycarboxylate superplasticizer (SP-C) (as a compatible surfactant) dispersed MWCNTs worse than SDS/DTAB but unwanted air bubbles were removed, so the defoamer can be omitted in the mixing process. (3) To solve the problem, a new compatible surfactant composition was developed and different ratios of surfactants were tested and evaluated by means of performance criteria mentioned above. The results showed that the new surfactant composition (SDS and SP-C) can disperse MWCNTs around 24% more efficiently than the other surfactant compositions.

Publisher

Hindawi Limited

Subject

General Materials Science

Cited by 23 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3